Inicio > Endocrinología y Nutrición > Síndrome de agotamiento de células madre precursor o resultado del Síndrome metabólico > Página 2

Síndrome de agotamiento de células madre precursor o resultado del Síndrome metabólico

parece justificado.

Recientemente se ha investigado la capacidad de diversos compuestos nutricionales para estimular la proliferación de células madre humanas derivadas de médula ósea (CD34 +) y células progenitoras de la sangre periférica (CD133 +) in vitro [50] La Aphanizomenon flos-aquae (AFA) puede modular la función inmunológica así como promover la proliferación y concentración de CD34+ en sangre (23, 24). StemEnhance (Aphanizomenon flos-aquae [AFA] extracto) incrementa la movilización de las células madre presentes en la médula ósea al torrente sanguíneo, lo cual sería indicado en los casos de síndrome metabólico, envejecimiento, lipodistrofias y obesidad. (25) La administración de » StemEnhance, SE2″, un suplemento alimenticio comercialmente disponible a partir de cianobacteria Aphanizomenon flos-aquae, induce un aumento transitorio del 18% en las células circulantes CD34 durante el periodo de una hora después del consumo, (26).

Por último, más allá de una nueva generación de regímenes higienodietéticos con productos nutricionales saludables y naturales, deberíamos considerar nuevas fronteras de células madre y su utilización en las patologías antes mencionadas. También considerando la posibilidad del “síndrome de agotamiento de células madres” como parte de la causa de estados mórbidos, como es el síndrome metabólico, generando nuevas modalidades para prevenir y tratarlos.

Bibliografía

  1. Hartman J, Frishman WH, Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiol Rev. 2014 Mar 10.
  2. Rickdker, PM Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity. Nutr Rev. 2007 Dec;65(12 Pt 2): S253-9.
  1. b Mitas P, Vejrazka M, Hruby J, Spunda R, Pecha O, Lindner J, Spacek M, Prediction of compartment syndrome based on analysis of biochemical parameters. Ann Vasc Surg [2014, 28(1):170-177]
  2. Lameira D1, Lejeune S, Mourad JJ. Metabolic syndrome: epidemiology and its risks, Ann Dermatol Venereol. 2008 Feb;135 Suppl 4:S249-53. doi: 10.1016/S0151-9638(08)70543-X.
  3. Shah S, Ulm J, Sifri ZC, Mohr AM, Livingston DH. Mobilization of bone marrow cells to the site of injury is necessary for wound healing. Journal of Trauma. 2009;67(2):315–321.
  4. Glaros T, Larsen M, Li L. Macrophages and fibroblasts during inflammation, tissue damage and organ injury. Frontiers in Bioscience. 2009;14:3988–3993
  5. Jialal I, Fadini GP, Pollock K, Devaraj S. Circulating levels of endothelial progenitor cell mobilizing factors in the metabolic syndrome. American Journal of Cardiology. 2010;106(11):1606–1608.
  6. Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. Journal of Applied Physiology. 2007;102(3):847–852.
  7. Fadini GP, De Kreutzenberg SV, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. European Heart Journal. 2006;27(18):2247–2255.
  8. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research and Therapy. 2007;9(1, article no. 204)
  9. Integrative Physiology Sonic Hedgehog–Modified Human CD34+ Cells Preserve Cardiac Function After Acute Myocardial Infarction Alexander R. Mackie, Ekaterina Klyachko, Tina Thorne, Kathryn M. Schultz, Meredith Millay, Aiko Ito, Christine E. Kamide, Ting Liu, Rajesh Gupta, Susmita Sahoo, Sol Misener, Raj Kishore, and Douglas W. Losordo Circulation Research. 2012;111:312-321 published online before print May 10 2012, doi:10.1161/CIRCRESAHA. 112.266015
  10. Shi Y1, Hu G, Su J, Li W, Chen QMesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010 May;20(5):510-8. doi: 10.1038/cr.2010.44. Epub 2010 Apr 6.
  11. Susmita Sahoo; Sol Misener; David Kim; Tina Thorne; Douglas E Vaughan; Douglas W Losordo, Abstract 19049: MiR-126 Containing Exosomes From Human CD34+ Stem Cells Activate Endothelial Cells to Initiate Angiogenesis and Ischemic Tissue Repair Circulation. 2013; 128: A19049
  12. Banas A. Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells. Methods Mol Biol. 2012;826:61-72. doi: 10.1007/978-1-61779-468-1_6.
  13. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006; 6: 567–578.
  14. Zuk PA, M Zhu, H Mizuno, J Huang, JW Futrell, AJ Katz, P Benhaim, HP Lorenz and MH Hedrick. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228.
  15. Pittenger MF, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, DW Simonetti, S Craig and DR Marshak. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–14
  16. Brinton RD, Wang JM: Therapeutic potential of neurogenesis for preventionvand recovery from alzheimer’s disease: Allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res, 2006; 3: 185–90
  17. Yu G, Borlongan CV, Stahl CE et al: Transplantation of human umbilical cord blood cells for the repair of myocardial infarction. Med Sci Monit, 2008; 14(10): RA163–72
  18. Tereshina EV. Metabolic abnormalities as a basis for age-dependent diseases and aging? State of the art. Advances in Gerontology. 2009;22(1):129–138.
  19. Angelo Scuteri, MD, PhD*,†; Samer S. Najjar, MD*; Denis C. Muller, MS*; Reubin Andres, MD*; Hidetaka Hougaku, MD*; E.Jeffrey Metter, MD*; Edward G. Lakatta, MD* Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffnes J Am Coll Cardiol. 2004;43(8):1388-1395. doi:10.1016/j.jacc.2003.10.061
  20. Christoph Scherfer,1 Violet C. Han,1 Yan Wang,1 Aimee E. Anderson,1 and Michael J. Galko1,2, Autophagy drives epidermal deterioration in a Drosophila model of tissue aging, Aging (Albany NY). Apr 2013; 5(4): 276–287.
  21. Mansilla E1, Díaz Aquino V, Zambón D, Marin GH, Mártire K, Roque G, Ichim T, Riordan NH, Patel A, Sturla F, Larsen G, Spretz R, Núñez L, Soratti C, Ibar R, van Leeuwen M, Tau JM, Drago H, Maceira A.Could metabolic syndrome, lipodystrophy, and aging be mesenchymal stem cell exhaustion syndromes?, Stem Cells Int. 2011;2011:943216. doi: 10.4061/2011/943216. Epub 2011 Jun 13
  22. Bickford PC, Tan J, Shytle RD et al: Nutraceuticals synergistically promote proliferation of human stem cells. Stem Cells Dev, 2006; 15: 118–23
  23. Shytle DR1, Tan J, Ehrhart J, Smith AJ, Sanberg CD, Sanberg PR, Anderson J, Bickford PC. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study. Med Sci Monit. 2010 Jan;16(1):BR1-5.
  24. Jensen GS1, Hart AN, Zaske LA, Drapeau C, Gupta N, Schaeffer DJ, Cruickshank JA.
  25. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae–related to modulation of CXCR4 expression by an L-selectin ligand?, Cardiovasc Revasc Med. 2007 Jul-Sep;8(3):189-202