Inicio > Farmacología > El asma necesita nuevas drogas > Página 5

El asma necesita nuevas drogas

entidad. Los ICSs son muy eficaces, pero solo suprimen síntomas que normalmente retornan al suspender el tratamiento. Las perspectivas para una cura parecen remotas, y causas moleculares y genéticas aun no están totalmente aclaradas. Es posible que un objetivo importante en el proceso inflamatorio podría ser la terapia anti-TNF como la usada en artritis reumatoide, pero estos objetivos sólo son identificables en modelos de laboratorio. Las metas más selectivas en los pacientes con sub fenotipos particulares (endotipos) de asma puede ser posible en el futuro gracias al desarrollo de biomarcadores y del perfil genético

Ha sido comprobado lo difícil que es encontrar nuevas terapias para el control del asma bronquial, a pesar del intenso esfuerzo e inversión. El asma es una enfermedad muy compleja, por lo que es improbable que el control de un solo receptor o mediador sería muy eficaz. Los corticosteroides son eficaces porque suprimen múltiples mecanismos inflamatorios en paralelo. Los otros tratamientos necesitan desarrollar una vía oral eficaz para los pacientes con la enfermedad ligera y moderada, pero esto ha demostrado ser un desafío mayor, porque es probable que cualquier terapia eficaz tenga peligrosos efectos colaterales y seria menos útil que los medicamentos actualmente en uso.

Referencias bibliográficas

Barnes J P. New Drugs for Asthma. Semin Respir Crit Care Med. 2012;33(6):685-94

  1. Nair P, Pizzichini MM, Kjarsgaard M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009;360(10):985–93
  2. Blaiss MS; Nathan RA; Stoloff SW; Meltzer EO; Murphy KR; Doherty DE. Patient and physician asthma deterioration terminology: results from the 2009 Asthma Insight and Management survey. Allergy Asthma Proc. 2012; 33(1):47-53
  3. Ledford, Dennis K , Lockey Richard F. Asthma and Comorbidities. Curr Opin Allergy Clin Immunol. 2013;13(1):78-86.
  4. Barnes PJ. Scientific rationale for combination inhalers with a long-acting b2-agonists and corticosteroids. Eur Respir J 2002;19:182–91
  5. Stevenson CS, Birrell MA. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 2011;130(2):93–105
  6. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet 2006;368(9537):804–13
  7. Lötvall J, Akdis CA, Bacharier LB. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 2011;127(2):355–60
  8. Evans DJ, Barnes PJ, Spaethe SM, van Alstyne EL, Mitchell MI, O’Connor BJ. Effect of a leukotriene B4 receptor antagonist, LY293111, on allergen induced responses in asthma. Thorax 1996;51(12):1178–84
  9. Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov 2007;6(4):313–25
  10. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008;118(11):3546–56
  11. Wenzel S, WilbrahamD, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007;370(9596):1422–31
  12. Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility inmice. AmJ Respir Cell Mol Biol 2009;41(5):516–24
  13. Flood-Page P, Swenson C, Faiferman I; International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 2007;176(11):1062–71
  14. Haldar P, Brightling CE, Hargadon B. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009;360(10):973–84
  15. Gauvreau GM, Boulet LP, Cockcroft DW. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med 2008;177(9):952–8
  16. Wenzel SE, Barnes PJ, Bleecker ER. A randomized, double-blind, placebo-controlled study of TNF-a blockade in severe persistent asthma. Am J Respir Crit Care Med 2009;179:549–58
  17. Ivanov S, Lindén A. Interleukin-17 as a drug target in human disease. Trends Pharmacol Sci 2009;30(2):95–103
  18. Commins S, Steinke JW, Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 2008;121(5):1108–11
  19. Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther 2008;117(3):313–353
  20. Proudfoot AE, Power CA, Schwarz MK. Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 2010;19(3):345–355
  21. Gauvreau GM, Boulet LP, Cockcroft DW. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med 2008;177(9):952–8
  22. Holz O, Khalilieh S, Ludwig-Sengpiel A. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 2010;35(3):564–70
  23. Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet 2009;373(9678):1905–17
  24. Barnes PJ. New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 2007;119(5):1055–62
  25. Bousquet J, Aubier M, Sastre J. Comparison of roflumilast, an oral anti-inflammatory, with beclomethasone dipropionate in the treatment of persistent asthma. Allergy 2006;61(1):72–8
  26. Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005;10(22):1503–19
  27. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004;3(1):17–26
  28. Bhavsar P, Hew M, Khorasani N. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 2008;63(9):784–90
  29. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007;1773(8):1358–1375
  30. Duan W, Chan JH, McKay K. Inhaled p38alpha mitogenactivated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 2005;171(6):571–8
  31. Maneechotesuwan K, Xin Y, Ito K. Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol 2007;178(4):2491–8
  32. To Y, Ito K, Kizawa Y. Targeting phosphoinositide-3-kinase-d with theophylline reverses corticosteroid insensitivity in COPD. Am J Respir Crit Care Med 2010;182:897–904
  33. Mercado N, To Y, Ito K, Barnes PJ. Nortriptyline reverses corticosteroid insensitivity by inhibition of PI3K-d. J Pharmacol Exp Ther 2011;337:465–70
  34. Kirsten A,Watz H, Kretschmar G. Efficacy of the pan-selectin antagonist Bimosiamose on ozone-induced airway inflammation in healthy subjects—a double blind, randomized, placebo-controlled, cross-over clinical trial. Pulm Pharmacol Ther 2011;24(5):555–8
  35. Oh SH, Park SM, Lee YH. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms with the development of asthma. Respir Med 2009;103(7):1020–4
  36. Spears M, Donnelly I, Jolly L. Bronchodilatory effect of the PPAR-gamma agonist rosiglitazone in smokers with asthma. Clin Pharmacol Ther 2009;86(1):49–53
  37. Richards DB, Bareille P, Lindo EL, Quinn D, Farrow SN. Treatment with a peroxisomal proliferator activated receptor gamma